在这项工作中,我们提出了叙述,这是一种新颖的管道,可以以逼真的方式同时编辑肖像照明和观点。作为一种混合神经形态的面部模型,叙述了几何学感知生成方法和正常辅助物理面部模型的互补益处。简而言之,叙述首先将输入肖像转变为粗糙的几何形状,并采用神经渲染来产生类似于输入的图像,并产生令人信服的姿势变化。但是,反演步骤引入了不匹配,带来了较少面部细节的低质量图像。因此,我们进一步估计了师范的肖像,以增强粗糙的几何形状,从而创建高保真的物理面部模型。特别是,我们融合了神经和身体渲染,以补偿不完善的反转,从而产生了现实和视图一致的新颖透视图像。在重新阶段,以前的作品着重于单一视图肖像重新审议,但也忽略了不同观点之间的一致性,引导不稳定和不一致的照明效果以进行视图变化。我们通过将其多视图输入正常地图与物理面部模型统一,以解决此问题。叙事通过一致的正常地图进行重新进行重新,施加了跨视图的约束并表现出稳定且连贯的照明效果。我们在实验上证明,叙述在先前的工作中取得了更现实的,可靠的结果。我们进一步使用动画和样式转移工具进行介绍,从而分别或组合姿势变化,灯光变化,面部动画和样式转移,所有这些都以摄影质量为单位。我们展示了生动的自由视图面部动画以及3D感知可靠的风格化,可帮助促进各种AR/VR应用程序,例如虚拟摄影,3D视频会议和后期制作。
translated by 谷歌翻译
照片逼真的面部视频肖像重演益处虚拟生产和众多VR / AR经验。由于肖像应该保持高现实主义和与目标环境的一致性,任务仍然具有挑战性。在本文中,我们介绍了一种可靠的神经视频肖像,同步的致密和再生方案,其将头部姿势和面部表达从源actor传送到具有任意新的背景和照明条件的目标演员的肖像视频。我们的方法结合了4D反射场学习,基于模型的面部性能捕获和目标感知神经渲染。具体地,我们采用渲染到视频翻译网络首先从混合面部性能捕获结果中合成高质量的OLAT镜片和alpha锍。然后,我们设计了一个语义感知的面部归一化方案,以实现可靠的显式控制以及多帧多任务学习策略,以同时编码内容,分割和时间信息以获得高质量的反射场推断。在培训之后,我们的方法进一步实现了目标表演者的照片现实和可控的视频肖像编辑。通过将相同的混合面部捕获和归一化方案应用于源视频输入,可以获得可靠的面部姿势和表达编辑,而我们的显式alpha和Olat输出使高质量的依据和背景编辑能够实现。凭借实现同步致密和再生的能力,我们能够改善各种虚拟生产和视频重写应用程序的现实主义。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Learning feature interactions is the key to success for the large-scale CTR prediction and recommendation. In practice, handcrafted feature engineering usually requires exhaustive searching. In order to reduce the high cost of human efforts in feature engineering, researchers propose several deep neural networks (DNN)-based approaches to learn the feature interactions in an end-to-end fashion. However, existing methods either do not learn both vector-wise interactions and bit-wise interactions simultaneously, or fail to combine them in a controllable manner. In this paper, we propose a new model, xDeepInt, based on a novel network architecture called polynomial interaction network (PIN) which learns higher-order vector-wise interactions recursively. By integrating subspace-crossing mechanism, we enable xDeepInt to balance the mixture of vector-wise and bit-wise feature interactions at a bounded order. Based on the network architecture, we customize a combined optimization strategy to conduct feature selection and interaction selection. We implement the proposed model and evaluate the model performance on three real-world datasets. Our experiment results demonstrate the efficacy and effectiveness of xDeepInt over state-of-the-art models. We open-source the TensorFlow implementation of xDeepInt: https://github.com/yanyachen/xDeepInt.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译